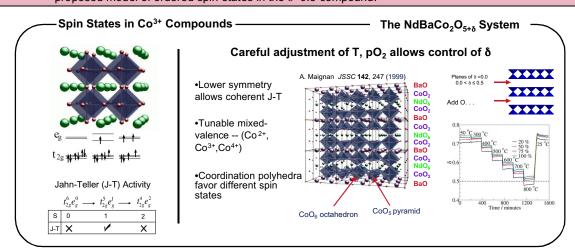
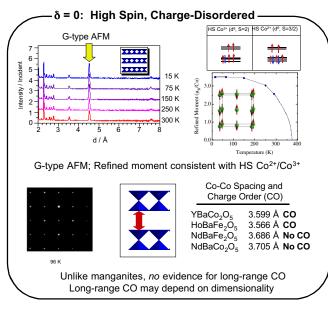
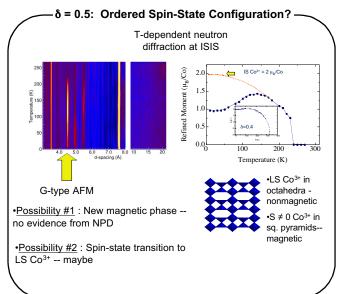
Control of Spins Using Tailored Oxide Structures

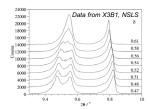

J.F. Mitchell (MSD), J.C. Burley (MSD), Simine Short (MSD), D.J. Miller (MSD), Y. Tang (MSD), G. Blake (ISIS), P.G. Radaelli (ISIS)

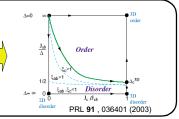

<u>Motivation</u>: To understand the influence of oxygen concentration and ordering on Co³⁺ spin states.


Approach: Synthesize a controlled range of oxygen contents, δ , in the NdBaCo₂O_{5+ δ} system, and survey the

structural and magnetic phase diagramss.

<u>Accomplishments:</u> (a) A broad survey of the structural and magnetic properties as a function of δ , and (b) a proposed model of ordered spin-states in the δ =0.5 compound.





-Future Directions -

- I. Detailed synthesis, structural studies at $\delta{\sim}0.5$
- •Reproducibly verify spin-state transition/ordering
- •Test how ordered/disordered O sublattice impacts magnetism

- II. Single Crystal Synthesis for neutron/x-ray scattering:
- •Test Random-Field Ising Model theory of Zachar on charge ordering in Co²⁺/Co³⁺ 2-1-4 compound.
- •Dynamics of spin-state transition

J.C. Burley, J.F. Mitchell, S. Short, D.J. Miller and Y. Tang J. Solid State Chem. 170, 339 (2003)

